
Thorsten Kurth

Guide for applying
to Cori P2 early
access (KNLEAP)

Cori	KNL	Training  
November	3,	2016

Do we need to do this?

• KNL	is	not	different	
- x86-64	compatible	
- self-hosted	
- compile	and	run	

• KNL	is	different	
- slow	sequential	cores	 
(≈1.2Ghz	vs.	≈2.3Ghz)	

- high-bandwidth	on-package	memory	but	no	L3	
- lots	of	cores	(68/272	vs.	32/64)	
- wide	vector	units	(512bit	vs.	256bit)

2

Why are we doing this?

• don’t	expect	good	performance	out	of	the	box

3

Why are we doing this?

• make	users	think	about	their	code	
- why	am	I	getting	the	performance	I	am	seeing?	
- can	I	do	better?	
- how	can	I	do	better?	

• gather	data	to	inform	future	NERSC	procurements	
- what	kinds	of	codes	are	running	at	NERSC	
- what	architectures	might	be	most	beneficial	to	
users?	

• make	Cori	Phase	II	a	success	for	everybody

4

Overview

• General	Section	
- repository	name	and	users	which	should	be	
enabled,	application/code	name,	science	
description,	programming	languages,	etc.	

• Performance	Section	
- guided	set	of	experiments	on	Haswell	and	KNL	
partition	

- show	us	that	your	code	is	ready	
• visit	https://my.nersc.gov/knleap.php	and	log	in

5

https://my.nersc.gov/knleap.php

General Section

• Repository	name:	you	apply	on	behalf	of	users	in	that	
repository	

• Repository	user	list:	select	up	to	5	users	to	grant	access	if	
applications	is	accepted	

• Application	Code:	the	name	of	your	code	
• Science	Description:	please	describe	briefly	what	your	
science	plans	are	and	what	partition	sizes	you	want	to	use	

• Programming	languages:	tell	us	what	your	code	is	made	of	
• Application	Kernels:	what	are	the	hotspots/workhorses	in	
your	application?	This	helps	us	to	give	you	hints	for	
optimization

6

Application Performance Section

• Thread	scaling	
- make	familiar	with	hybrid	MPI+OpenMP	
programming	model	

- show	how	well	your	code	utilizes	threads	
- might	help	your	code	to	scale-out	
- if	your	code	uses	MPI-only,	might	still	be	OK

7

Application Performance Section

• Thread	scaling	
- make	familiar	with	hybrid	MPI+OpenMP	
programming	model	

- show	how	well	your	code	utilizes	threads	
- might	help	your	code	to	scale-out	
- if	your	code	uses	MPI-only,	might	still	be	OK

7

#!/bin/bash
#SBATCH -N 1
#SBATCH -p regular
#SBATCH -C haswell

#this is the Haswell script

echo ncores,nht,arch,time > threadscale_hsw.csv
for nc in 1 2 4 8 16 32; do

for nht in 1 2; do
export OMP_NUM_THREADS=$((${nc} * ${nht}))
export OMP_PLACES=cores“(${nc})“
export OMP_PROC_BIND=spread

srun -n 1 -c 64 --cpu_bind=cores ./my_hsw_app.x >
output

timing=<extract timing from output>

echo ${nt},${nht},hsw,${timing} >> threadscale_hsw.csv
done

done

Application Performance Section

• Thread	scaling	
- make	familiar	with	hybrid	MPI+OpenMP	
programming	model	

- show	how	well	your	code	utilizes	threads	
- might	help	your	code	to	scale-out	
- if	your	code	uses	MPI-only,	might	still	be	OK

7

#!/bin/bash
#SBATCH -N 1
#SBATCH -p regular
#SBATCH -C knl,quad,cache

#this is the KNL script

echo ncores,nht,arch,time > threadscale_knl.csv
for nc in 1 2 4 8 16 32 64; do

for nht in 1 2 4; do
export OMP_NUM_THREADS=$((${nc} * ${nht}))
export OMP_PLACES=cores“(${nc})“
export OMP_PROC_BIND=spread

srun -n 1 -c 272 --cpu_bind=cores ./my_knl_app.x >
output

timing=<extract timing from output>

echo ${nt},${nht},knl,${timing} >> threadscale_knl.csv
done

done

Application Performance Section

• Thread	scaling	
- make	familiar	with	hybrid	MPI+OpenMP	
programming	model	

- show	how	well	your	code	utilizes	threads	
- might	help	your	code	to	scale-out	
- if	your	code	uses	MPI-only,	might	still	be	OK

7

EMGeo	thread	scaling

Application Performance Section

• MPI	vs.	threading	performance	
• what	is	the	#ranks/#thread	sweet-spot	for	my	
application	on	a	single	node	

• might	change	when	scaling	out,	but	gives	a	
good	impression	of	what	might	be	a	
reasonable	setting	

• please	keep	NUMA	effects	in	mind

8

Application Performance Section

• MPI	vs.	threading	performance	
• what	is	the	#ranks/#thread	sweet-spot	for	my	
application	on	a	single	node	

• might	change	when	scaling	out,	but	gives	a	
good	impression	of	what	might	be	a	
reasonable	setting	

• please	keep	NUMA	effects	in	mind

8

#!/bin/bash
#SBATCH -N 1
#SBATCH -p regular
#SBATCH -C haswell

#this is the Haswell script
export nht=<optimal number of hyperthreads>

echo nranks,arch,time > mpi_vs_threadscale_hsw.csv
for nr in 1 2 4 8 16 32; do

 export OMP_NUM_THREADS=$(($((32 * ${nht})) / ${nr}))
 export OMP_PLACES=cores“($((32 / ${nr})))“
 export OMP_PROC_BIND=spread

srun -n 1 -c $((64 / ${nr})) --cpu_bind=cores  
 ./my_hsw_app.x input_${nr} > output

 timing=<extract timing from output>

 echo ${nr},knl,${timing} >> mpi_vs_threadscale_hsw.csv
done

Application Performance Section

• MPI	vs.	threading	performance	
• what	is	the	#ranks/#thread	sweet-spot	for	my	
application	on	a	single	node	

• might	change	when	scaling	out,	but	gives	a	
good	impression	of	what	might	be	a	
reasonable	setting	

• please	keep	NUMA	effects	in	mind

8

#!/bin/bash
#SBATCH -N 1
#SBATCH -p regular
#SBATCH -C knl,quad,cache

#this is the KNL script
export nht=<optimal number of hyperthreads>

echo nranks,arch,time > mpi_vs_threadscale_knl.csv
for nr in 1 2 4 8 16 32 64; do

 export OMP_NUM_THREADS=$(($((64 * ${nht})) / ${nr}))
 export OMP_PLACES=cores“($((64 / ${nr})))“
 export OMP_PROC_BIND=spread

 srun -n 1 -c $((256 / ${nr})) --cpu_bind=cores  
 ./my_knl_app.x input_${nr} > output

 timing=<extract timing from output>

 echo ${nr},knl,${timing} >> mpi_vs_threadscale_knl.csv
done

Application Performance Section

• MPI	vs.	threading	performance	
• what	is	the	#ranks/#thread	sweet-spot	for	my	
application	on	a	single	node	

• might	change	when	scaling	out,	but	gives	a	
good	impression	of	what	might	be	a	
reasonable	setting	

• please	keep	NUMA	effects	in	mind

8

EMGeo	MPI	vs.	thread	scaling

Application Performance Section

• (Memory)	mode	comparison	
- KNL	chip	and	memory	configuration	can	be	changed	

‣ chip:	Quadrant,	SNC-2,	SNC-4	
‣ memory:	flat,	cache,	(hybrid)	

- make	yourself	familiar	with	how	to	use	these	modes	
since	they	can	significantly	affect	the	performance	

- experience:	memory	modes	have	bigger	impact,	we	
only	ask	you	to	test	those	(feel	free	to	try	other	cpu	
modes	as	well)

9

Application Performance Section

• (Memory)	mode	comparison	
- KNL	chip	and	memory	configuration	can	be	changed	

‣ chip:	Quadrant,	SNC-2,	SNC-4	
‣ memory:	flat,	cache,	(hybrid)	

- make	yourself	familiar	with	how	to	use	these	modes	
since	they	can	significantly	affect	the	performance	

- experience:	memory	modes	have	bigger	impact,	we	
only	ask	you	to	test	those	(feel	free	to	try	other	cpu	
modes	as	well)

9

#!/bin/bash
#SBATCH -N 1
#SBATCH -p regular
#SBATCH -C knl,quad,cache

#this is the KNL script
export nr=<optimal number of ranks>
export nc=<optimal number of cores>
export nht=<optimal number of hyperthreads>

#run
export OMP_NUM_THREADS=$(($((64 * ${nht})) / ${nr}))
export OMP_PLACES=cores“($((64 / ${nr})))“
export OMP_PROC_BIND=spread

echo mode,time > mode_comparison_knl.csv
srun -n 1 -c $((256 / ${nr})) --cpu_bind=cores  
 ./my_knl_app.x input_${nr} > output

timing=<extract timing from output>

echo cache,${timing} >> mode_comparison_knl.csv

Application Performance Section

• (Memory)	mode	comparison	
- KNL	chip	and	memory	configuration	can	be	changed	

‣ chip:	Quadrant,	SNC-2,	SNC-4	
‣ memory:	flat,	cache,	(hybrid)	

- make	yourself	familiar	with	how	to	use	these	modes	
since	they	can	significantly	affect	the	performance	

- experience:	memory	modes	have	bigger	impact,	we	
only	ask	you	to	test	those	(feel	free	to	try	other	cpu	
modes	as	well)

#!/bin/bash
#SBATCH -N 1
#SBATCH -p regular
#SBATCH -C knl,quad,flat

#this is the KNL script
export nr=<optimal number of ranks>
export nc=<optimal number of cores>
export nht=<optimal number of hyperthreads>

#run
export OMP_NUM_THREADS=$(($((64 * ${nht})) / ${nr}))
export OMP_PLACES=cores“($((64 / ${nr})))“
export OMP_PROC_BIND=spread

#flat+ddr
srun -n 1 -c $((256 / ${nr})) --cpu_bind=cores  
 numactl -p 0 ./my_knl_app.x input_${nr} > output
timing=<extract timing from output>
echo „flat+ddr“,${timing} >> mode_comparison_knl.csv

#flat+hbm
srun -n 1 -c $((256 / ${nr})) --cpu_bind=cores  
 numactl -p 1 ./my_knl_app.x input_${nr} > output
timing=<extract timing from output>
echo „flat+hbm“,${timing} >> mode_comparison_knl.csv9

Application Performance Section

• (Memory)	mode	comparison	
- KNL	chip	and	memory	configuration	can	be	changed	

‣ chip:	Quadrant,	SNC-2,	SNC-4	
‣ memory:	flat,	cache,	(hybrid)	

- make	yourself	familiar	with	how	to	use	these	modes	
since	they	can	significantly	affect	the	performance	

- experience:	memory	modes	have	bigger	impact,	we	
only	ask	you	to	test	those	(feel	free	to	try	other	cpu	
modes	as	well)

9

EMGeo	mode	comparison

Application Performance Section

• Vectorization	experiment	
- does	your	code	benefit	from	larger	vector	
width	in	KNL?	

- is	your	code	vectorized	efficiently?	
• remark:	if	the	main	workload	in	your	code	comes	
from	external	library	calls,	then	you	might	not	see	
a	big	difference	in	this	experiment

10

Application Performance Section

• Vectorization	experiment	
- does	your	code	benefit	from	larger	vector	
width	in	KNL?	

- is	your	code	vectorized	efficiently?	
• remark:	if	the	main	workload	in	your	code	comes	
from	external	library	calls,	then	you	might	not	see	
a	big	difference	in	this	experiment

10

#!/bin/bash
#SBATCH -N 1
#SBATCH -p regular
#SBATCH -C knl,quad,<optimal mode>

#this is the KNL script
export nr=<optimal number of ranks>
export nc=<optimal number of cores>
export nht=<optimal number of hyperthreads>

#run
export OMP_NUM_THREADS=$(($((64 * ${nht})) / ${nr}))
export OMP_PLACES=cores“($((64 / ${nr})))“
export OMP_PROC_BIND=spread

echo mode,time > vec_comparison.csv

#scalar
srun -n 1 -c $((256 / ${nr})) --cpu_bind=cores <mode-dep-prefix> ./
my_scalar_knl_app.x input_${nr} > output
timing=<extract timing from output>
echo scalar,${timing} >> vec_comparison_knl.csv

#avx2
srun -n 1 -c $((256 / ${nr})) --cpu_bind=cores <mode-dep-prefix> ./
my_avx2_knl_app.x input_${nr} > output
timing=<extract timing from output>
echo "AVX-2",${timing} >> vec_comparison_knl.csv

#avx512
srun -n 1 -c $((256 / ${nr})) --cpu_bind=cores <mode-dep-prefix> ./
my_knl_app.x input_${nr} > output
timing=<extract timing from output>
echo "AVX-512",${timing} >> vec_comparison_knl.csv

Application Performance Section

• Vectorization	experiment	
- does	your	code	benefit	from	larger	vector	
width	in	KNL?	

- is	your	code	vectorized	efficiently?	
• remark:	if	the	main	workload	in	your	code	comes	
from	external	library	calls,	then	you	might	not	see	
a	big	difference	in	this	experiment

10
EMGeo	vectorization	study

Application

• overview	over	compilation	flags	for	this	experiment

11

no-vectorization AVX-2 AVX-512

Intel -no-vec	-no-simd	
(comment	out	SIMD) -xCORE-AVX2 -xMIC-AVX512

GNU

-march=knl	-fno-
tree-vectorize	-fno-
tree-loop-vectorize	-

fno-tree-slp-
vectorize

-march=knl	-mavx2 -march=knl

Cray -h	vector0	  
-h	nopattern -h	cpu=haswell -h	cpu=mic-knl

Application Performance Section

• Multi-node	scaling	
- show	us	how	good	your	code	scales	
- demonstrate	scaling	according	to	character	of	
production	runs	
‣ capability:	strong	scaling	(fixed	global	problem	
size)	

‣ capacity:	weak	scaling	(fixed	local	problem	size)	
‣ or	both	

• find	the	optimal	choices	for	mode/#ranks_per_node	
for	each	number	of	nodes

12

Application Performance Section

• Multi-node	scaling	
- show	us	how	good	your	code	scales	
- demonstrate	scaling	according	to	character	of	
production	runs	
‣ capability:	strong	scaling	(fixed	global	problem	
size)	

‣ capacity:	weak	scaling	(fixed	local	problem	size)	
‣ or	both	

• find	the	optimal	choices	for	mode/#ranks_per_node	
for	each	number	of	nodes

12

Final Remarks

• visit	https://my.nersc.gov/knleap.php	and	log	in	
• fill	out	the	form	and	submit	
• note	that	once	someone	submitted	an	application	for	
a	given	repo,	he	will	become	the	point	of	contact.	

• please	save	your	application	data	manually	
• applications	can	be	retrieved	as	PDF	on	request,	send	
email	to	consult@nersc.gov	

• if	rejected:	see	what	you	can	do	in	the	upcoming	
talks	about	profiling	and	review	our	case	studies

13

https://my.nersc.gov/knleap.php
mailto:consult@nersc.gov?subject=Application%20Retrieval%20Request
http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/application-case-studies/

What can be achieved?

14

What can be achieved?

14

Thank you

15

